References

  1.  Selective serotonin reuptake inhibitors pathway. 2009. https://www.pharmgkb.org/pathway/PA161749006.
  2.  M. Kato, et al., Review and meta-analysis of antidepressant pharmacogenetic findings in major depressive disorder. Mol. Psychiatry 15, 473-500 (2010).
  3.  S. Porcelli, et al., Meta-analysis of serotonin transporter gene promoter polymorphism (5-HTTLPR) association with antidepressant efficacy. Eur. Neuropsychopharmacol. 22, 239-258 (2012).
  4.  A. Serretti, et al., Meta-analysis of serotonin transporter gene promoter polymorphism (5-HTTLPR) association with selective serotonin reuptake inhibitor efficacy in depressed patients. Mol. Psychiatry 12, 247-257 (2007).
  5.  J. Staeker, et al., Polymorphisms in serotonergic pathways influence the outcome of antidepressant therapy in psychiatric inpatients. Genet Test Mol Biomarkers 18, 20-31 (2014).
  6.  P. R. Shiroma, et al., SLC6A4 polymorphisms and age of onset in late-life depression on treatment outcomes with citalopram: a Sequenced Treatment Alternatives to Relieve Depression (STAR*D) report. Am. J. Geriatr. Psychiatry 22, 1140-1148 (2014).
  7.  C. A. Altar et al., Clinical validity of cytochrome P450 metabolism and serotonin gene variants in psychiatric pharmacotherapy. Int. Rev. Psychiatry 25, 509-533 (2013).
  8.  C. Fabbri, et al., Pharmacogenetics of major depressive disorder: top genes and pathways toward clinical applications. Curr. Psychiatry Rep. 17, 50 (2015).
  9.  D. Karlovic, et al., Serotonin transporter gene (5-HTTLPR) polymorphism and efficacy of selective serotonin reuptake inhibitors–do we have sufficient evidence for clinical practice. Acta clinica Croatica 52, 353-362 (2013).
  10.  K. M. Smits, et al., Does pretreatment testing for serotonin transporter polymorphisms lead to earlier effects of drug treatment in patients with major depression? A decision-analytic model. Clin. Ther. 29, 691-702 (2007).
  11.  P. Xie, et al., Serotonin transporter 5-HTTLPR genotype moderates the effects of childhood adversity on posttraumatic stress disorder risk: a replication study. Am. J. Med. Gene B Neuropsychiatr. Genet. 159B, 644-652 (2012).
  12.  Y. Liu et al., An examination of the association between 5-HTTLPR, combat exposure, and PTSD diagnosis among U.S. veterans. PLoS ONE 10, e0119998 (2015).
  13.  A. Y. Zahavi et al., Serotonin and Dopamine Gene Variation and Theory of Mind Decoding Accuracy in Major Depression: A Preliminary Investigation. PLoS ONE 11, e0150872 (2016).
  14.  B. Etain et al., Interaction between SLC6A4 promoter variants and childhood trauma on the age at onset of bipolar disorders. Sci Rep 5, 16301 (2015).
  15.  B. Meyer et al., Maintenance of Chronic Fatigue Syndrome (CFS) in Young CFS Patients Is Associated with the 5-HTTLPR and SNP rs25531 A > G Genotype. PLoS ONE 10, e0140883 (2015).
  16.  S. Iurescia, et al., Role of the 5-HTTLPR and SNP Promoter Polymorphisms on Serotonin Transporter Gene Expression: a Closer Look at Genetic Architecture and In Vitro Functional Studies of Common and Uncommon Allelic Variants. Mol. Neurobiol. 53, 5510-5526 (2016).
  17.  R. O'Hara et al., Serotonin transporter polymorphism, memory and hippocampal volume in the elderly: association and interaction with cortisol. Mol. Psychiatry 12, 544-555 (2007).
  18.  I. H. Gotlib, et al., HPA axis reactivity: a mechanism underlying the associations among 5-HTTLPR, stress, and depression. Biol. Psychiatry 63, 847-851 (2008).
  19.  B. M. Way, et al., The serotonin transporter promoter polymorphism is associated with cortisol response to psychosocial stress. Biol. Psychiatry 67, 487-492 (2010).
  20.  M. K. Taylor, et al., Genetic variants in serotonin and corticosteroid systems modulate neuroendocrine and cardiovascular responses to intense stress. Behav. Brain Res. 270, 1-7 (2014).
  21.  M. K. Taylor et al., Genetic and environmental modulation of neurotrophic and anabolic stress response: Counterbalancing forces. Physiol. Behav. 151, 1-8 (2015).
  22.  N. Alexander et al., DNA methylation profiles within the serotonin transporter gene moderate the association of 5-HTTLPR and cortisol stress reactivity. Transl Psychiatry 4, e443 (2014).
  23.  C. Fabbri, et al., Progress and prospects in pharmacogenetics of antidepressant drugs. Expert Opin. Drug Metab. Toxicol. 12, 1157-1168 (2016).
  24.  M. Ramos et al., Pharmacogenetic studies: a tool to improve antidepressant therapy. Drug Metab Pers Ther 31,

197-204 (2016).

  1.  T. Yoshimizu et al., Functional implications of a psychiatric risk variant within CACNA1C in induced human neurons. Mol. Psychiatry 20, 162-169 (2015).
  2.  P. J. Harrison, Molecular neurobiological clues to the pathogenesis of bipolar disorder. Curr. Opin. Neurobiol. 36, 1-6 (2016).
  3.  J. I. Nurnberger, Jr. et al., Identification of pathways for bipolar disorder: a meta-analysis. JAMA Psychiatry 71, 657-664 (2014).
  4.  M. A. Ferreira et al., Collaborative genome-wide association analysis supports a role for ANK3 and CACNA1C in bipolar disorder. Nat. Genet. 40, 1056-1058 (2008).
  5.  S. Bhat et al., CACNA1C (Cav1.2) in the pathophysiology of psychiatric disease. Prog. Neurobiol. 99, 1-14 (2012). 30. A. Szczepankiewicz, Evidence for single nucleotide polymorphisms and their association with bipolar disorder.

Neuropsychiatr Dis Treat 9, 1573-1582 (2013).

  1.  S. Gonzalez et al., Suggestive evidence for association between L-type voltage-gated calcium channel (CACNA1C) gene haplotypes and bipolar disorder in Latinos: a family-based association study. Bipolar Disord. 15, 206-214 (2013).
  2.  Large-scale genome-wide association analysis of bipolar disorder identifies a new susceptibility locus near ODZ4. Nat Genet. 43, 977-983 (2011).
  3.  S. Erk et al., Replication of brain function effects of a genome-wide supported psychiatric risk variant in the CACNA1C gene and new multi-locus effects. Neuroimage 94, 147-154 (2014).
  4.  J. L. Ivorra et al., Replication of previous genome-wide association studies of psychiatric diseases in a large schizophrenia case-control sample from Spain. Schizophr. Res. 159, 107-113 (2014).
  5.  F. Nie et al., Genetic analysis of SNPs in CACNA1C and ANK3 gene with schizophrenia: A comprehensive meta-analysis. Am. J. Med. Genet. B Neuropsychiatr. Genet. 168, 637-648 (2015).
  6.  H. Jiang et al., Evaluating the association between CACNA1C rs1006737 and schizophrenia risk: A meta-analysis. Asia Pac Psychiatry 7, 260-267 (2015).
  7.  R. Gurung, et al., What is the impact of genome-wide supported risk variants for schizophrenia and bipolar disorder on brain structure and function? A systematic review. Psychol. Med. 45, 2461-2480 (2015).
  8.  S. Porcelli et al., CACNA1C gene and schizophrenia: a case-control and pharmacogenetic study. Psychiatr. Genet. 25, 163-167 (2015).
  9.  E. Pasparakis et al., The effects of the CACNA1C rs1006737 A/G on affective startle modulation in healthy males. Eur. Psychiatry 30, 492-498 (2015).
  10.  L. D. Brewer et al., Increased vulnerability of hippocampal neurons with age in culture: temporal association with increases in NMDA receptor current, NR2A subunit expression and recruitment of L-type calcium channels. Brain Res. 1151, 20-31 (2007).
  11.  F. M. Paulus et al., Association of rs1006737 in CACNA1C with alterations in prefrontal activation and fronto-hippocampal connectivity. Hum. Brain Mapp. 35, 1190-1200 (2014).
  12.  C. Wolf et al., CACNA1C genotype explains interindividual differences in amygdala volume among patients with schizophrenia. Eur. Arch. Psychiatry Clin. Neurosci. 264, 93-102 (2014).
  13.  E. Fourcaudot et al., L-type voltage-dependent Ca (2+) channels mediate expression of presynaptic LTP in amygdala. Nat. Neurosci. 12, 1093-1095 (2009).
  14.  H. Hori et al., Effects of the CACNA1C risk allele on neurocognition in patients with schizophrenia and healthy individuals. Sci Rep 2, 634 (2012).
  15.  M. G. Soeiro-de-Souza et al., The CACNA1C risk allele selectively impacts on executive function in bipolar type I disorder. Acta Psychiatr. Scand. 128, 362-369 (2013).
  16.  J. Sarris, et al., Omega-3 for bipolar disorder: meta-analyses of use in mania and bipolar depression. J. Clin. Psychiatry 73, 81-86 (2012).
  17.  N. V. Kraguljac et al., Efficacy of omega-3 fatty acids in mood disorders – a systematic review and meta-analysis. Psychopharmacol. Bull. 42, 39-54 (2009).
  18.  P. Y. Lin, et al., A meta-analytic review of polyunsaturated fatty acid compositions in patients with depression. Biol. Psychiatry 68, 140-147 (2010).
  19.  K. P. Su, et al., Omega-3 polyunsaturated fatty acids for major depressive disorder. Expert Opin. Investig. Drugs 22, 1519-1534 (2013).
  20.  N. Eckart et al., Functional Characterization of Schizophrenia-Associated Variation in CACNA1C. PLoS ONE 11, e0157086 (2016).
  21.  T. Uemura, et al., CACNA1C SNP rs1006737 associates with bipolar I disorder independent of the Bcl-2 SNP rs956572 variant and its associated effect on intracellular calcium homeostasis. World J Biol Psychiatry. 17, 525-534 (2016).
  22.  J. Jogia et al., The impact of the CACNA1C gene polymorphism on front limbic function in bipolar disorder. Mol. Psychiatry 16, 1070-1071 (2011).
  23.  M. Tesli et al., CACNA1C risk variant and amygdala activity in bipolar disorder, schizophrenia and healthy controls. PLoS ONE 8, e56970 (2013).
  24.  F. Casamassima et al., Phenotypic effects of a bipolar liability gene among individuals with major depressive disorder. Am. J. Med. Genet. B Neuropsychiatr. Genet. 153B, 303-309 (2010).
  25.  S. Rao et al., Common variants in CACNA1C and MDD susceptibility: A comprehensive meta-analysis. Am. J. Med.

Genet. B Neuropsychiatr. Genet. 171, 896-903 (2016).

  1.  E. Shirahata et al., Ankyrin-G regulates inactivation gating of the neuronal sodium channel, Nav1.6. J. Neurophysiol. 96, 1347-1357 (2006).
  2.  T. G. Schulze et al., Two variants in Ankyrin 3 (ANK3) are independent genetic risk factors for bipolar disorder. Mol. Psychiatry 14, 487-491 (2009).
  3.  A. Yuan et al., ANK3 as a risk gene for schizophrenia: new data in Han Chinese and meta-analysis. Am. J. Med. Genet. B Neuropsychiatr. Genet. 159B, 997-1005 (2012).
  4.  M. P. Leussis, et al., Ankyrin 3: genetic association with bipolar disorder and relevance to disease pathophysiology. Biology of mood & anxiety disorders 2, 18 (2012).
  5.  J. Linke et al., Genome-wide supported risk variant for bipolar disorder alters anatomical connectivity in the human brain. Neuroimage 59, 3288-3296 (2012).
  6.  G. Delvecchio, et al., The effect of ANK3 bipolar-risk polymorphisms on the working memory circuitry differs between loci and according to risk-status for bipolar disorder. Am. J. Med. Genet. B Neuropsychiatr. Genet. 168B, 188-196 (2015).
  7.  C. Zhang et al., Genetic modulation of working memory deficits by ankyrin 3 gene in schizophrenia. Prog. Neuropsychopharmacol. Biol. Psychiatry 50, 110-115 (2014).
  8.  G. Ruberto et al., The cognitive impact of the ANK3 risk variant for bipolar disorder: initial evidence of selectivity to signal detection during sustained attention. PLoS ONE 6, e16671 (2011).
  9.  M. P. Leussis et al., The ANK3 bipolar disorder gene regulates psychiatric-related behaviors that are modulated by lithium and stress. Biol. Psychiatry 73, 683-690 (2013).
  10.  J. C. Halford, et al., 5-HT (2C) receptor agonists and the control of appetite. Handb. Exp. Pharmacol., 349-356 (2012).
  11.  P. R. Buckland et al., Low gene expression conferred by association of an allele of the 5-HT2C receptor gene with antipsychotic-induced weight gain. Am. J. Psychiatry 162, 613-615 (2005).
  12.  D. D. Miller, et al., Clozapine-induced weight gain associated with the 5HT2C receptor -759C/T polymorphism. Am. J. Med. Genet. B Neuropsychiatr. Genet. 133B, 97-100 (2005).
  13.  G. P. Reynolds, Pharmacogenetic Aspects of Antipsychotic Drug-induced Weight Gain – A Critical Review. Clin Pychopharmacology Neurosci 10, 71-77 (2012).
  14.  M. N. Sicard et al., Polymorphisms of the HTR2C gene and antipsychotic-induced weight gain: an update and meta-analysis. Pharmacogenomics 11, 1561-1571 (2010).
  15.  M. D. Jibson., Second-generation antipsychotic medications: Pharmacology, administration, and comparative side effects. UpToDate. (2013).
  16.  G. P. Reynolds, et al., The 5-HT2C receptor and antipsychoticinduced weight gain – mechanisms and genetics. J. Psychopharmacol. 20, 15-18 (2006).
  17.  M. D. Brennan, Pharmacogenetics of second-generation antipsychotics. Pharmacogenomics 15, 869-884 (2014). 73. H. A. Nasrallah, Atypical antipsychotic-induced metabolic side effects: insights from receptor-binding profiles. Mol.

Psychiatry 13, 27-35 (2008).

  1.  T. A. Shams, et al., Antipsychotic induced weight gain: genetics, epigenetics, and biomarkers reviewed. Curr. Psychiatry Rep. 16, 473 (2014).
  2.  F. Montastruc et al., Role of serotonin 5-HT2C and histamine H1 receptors in antipsychotic-induced diabetes: A pharmacoepidemiological-pharmacodynamic study in VigiBase. Eur. Neuropsychopharmacol. 25, 1556-1565 (2015).
  3.  O. Tschritter et al., An Obesity Risk SNP (rs17782313) near the MC4R Gene Is Associated with Cerebrocortical Insulin Resistance in Humans. J Obes 2011, 283153 (2011).
  4.  S. A. Cole et al., Evidence that multiple genetic variants of MC4R play a functional role in the regulation of energy expenditure and appetite in Hispanic children. Am. J. Clin. Nutr. 91, 191-199 (2010).
  5.  F. Czerwensky, et al., MC4R rs489693: a clinical risk factor for second generation antipsychotic-related weight gain? Int. J. Neuropsychopharmacol. 16, 2103-2109 (2013).
  6.  A. K. Malhotra et al., Association between common variants near the melanocortin 4 receptor gene and severe antipsychotic drug-induced weight gain. Arch. Gen. Psychiatry 69, 904-912 (2012).
  7.  C. U. Correll, et al., Antipsychotic drugs and obesity. Trends Mol. Med. 17, 97-107 (2011).
  8.  J. W. Newcomer, Second-generation (atypical) antipsychotics and metabolic effects: a comprehensive literature review. CNS Drugs 19 Suppl 1, 1-93 (2005).
  9.  J. P. Zhang et al., Pharmacogenetic Associations of Antipsychotic Drug-Related Weight Gain: A Systematic Review and Meta-analysis. Schizophr. Bull. 42, 1418-1437 (2016).
  10.  Z. Naumovska et al., Pharmacogenetics and antipsychotic treatment response. Prilozi 36, 53-67 (2015). 84. T. Lencz et al., DRD2 promoter region variation predicts antipsychotic-induced weight gain in first episode

schizophrenia. Pharmacogenet. Genomics 20, 569-572 (2010).

  1.  J. P. Zhang, et al., Dopamine D2 receptor genetic variation and clinical response to antipsychotic drug treatment: a meta-analysis. Am. J. Psychiatry 167, 763-772 (2010).
  2.  R. Lencer et al., Association of variants in DRD2 and GRM3 with motor and cognitive function in first-episode psychosis. Eur. Arch. Psychiatry Clin. Neurosci. 264, 345-355 (2014).
  3.  D. Chen et al., Association between polymorphisms of DRD2 and DRD4 and opioid dependence: evidence from the current studies. Am. J. Med. Genet. B Neuropsychiatr. Genet. 156B, 661-670 (2011).
  1.  A. J. Sheldrick et al., Effect of COMT val158met genotype on cognition and personality. Eur. Psychiatry 23, 385-389 (2008).
  2.  M. J. Frank, et al., Neurogenetics and pharmacology of learning, motivation, and cognition. Neuropsychopharmacology 36, 133-152 (2011).
  3.  J. H. Barnett, et al., Effects of the catechol-O-methyltransferase Val158Met polymorphism on executive function: a meta-analysis of the Wisconsin Card Sort Test in schizophrenia and healthy controls. Mol. Psychiatry 12, 502-509 (2007).
  4.  R. Cools, et al., Inverted-U-shaped dopamine actions on human working memory and cognitive control. Biol. Psychiatry 69, e113-125 (2011).
  5.  R. Cools, Role of dopamine in the motivational and cognitive control of behavior. Neuroscientist 14, 381-395 (2008). 93. J. P. Lindenmayer et al., COMT genotype and response to cognitive remediation in schizophrenia. Schizophr. Res.

168, 279-284 (2015).

  1.  A. Hamidovic, et al., Catechol-O-methyltransferase val158met genotype modulates sustained attention in both the drug-free state and in response to amphetamine. Psychiatr. Genet. 20, 85-92 (2010).
  2.  S. Loffler et al., The effect of repetitive transcranial magnetic stimulation on monoamine outflow in the nucleus accumbens shell in freely moving rats. Neuropharmacology 63, 898-904 (2012).
  3.  S. S. Cho, et al., rTMS of the left dorsolateral prefrontal cortex modulates dopamine release in the ipsilateral anterior cingulate cortex and orbitofrontal cortex. PLoS ONE 4, e6725 (2009).
  4.  C. W. Slotema, et al., I. E. Sommer, Should we expand the toolbox of psychiatric treatment methods to include Repetitive Transcranial Magnetic Stimulation (rTMS)? A meta-analysis of the efficacy of rTMS in psychiatric disorders. J. Clin. Psychiatry 71, 873-884 (2010).
  5.  M. L. Paillere Martinot et al., Baseline brain metabolism in resistant depression and response to transcranial magnetic stimulation. Neuropsychopharmacology 36, 2710-2719 (2011).
  6.  D. Hadley et al., Safety, tolerability, and effectiveness of high doses of adjunctive daily left prefrontal repetitive transcranial magnetic stimulation for treatment-resistant depression in a clinical setting. J. ECT 27, 18-25 (2011).
  7. C. Baeken et al., HF-rTMS treatment in medication-resistant melancholic depression: results from 18FDG-PET brain imaging. CNS spectrums 14, 439-448 (2009).
  8. M. S. George, et al., The expanding evidence base for rTMS treatment of depression. Curr Opin Psychiatry. 26, 13-18 (2013).
  9. S. Poletti et al., The COMT Val158Met polymorphism moderates the association between cognitive functions and white matter microstructure in schizophrenia. Psychiatr. Genet. 26, 193-202 (2016).
  10. J. A. Apud, et al., Treatment of cognitive deficits associated with schizophrenia: potential role of catechol-O-methyltransferase inhibitors. CNS Drugs 21, 535-557 (2007).
  11. J. A. Apud et al., Tolcapone improves cognition and cortical information processing in normal human subjects. Neuropsychopharmacology 32, 1011-1020 (2007).
  12. M. Gupta et al., Diverse facets of COMT: from a plausible predictive marker to a potential drug target for schizophrenia. Curr. Mol. Med. 11, 732-743 (2011).
  13. C. Barkus et al., Genotype-Dependent Effects of COMT Inhibition on Cognitive Function in a Highly Specific, Novel Mouse Model of Altered COMT Activity. Neuropsychopharmacology 41, 3060-3069 (2016).
  14. S. G. Giakoumaki, et al., Improvement of prepulse inhibition and executive function by the COMT inhibitor tolcapone depends on COMT Val158Met polymorphism. Neuropsychopharmacology 33, 3058-3068 (2008).
  15. S. M. Farrell., et al. COMT Val (158) Met genotype determines the direction of cognitive effects produced by catechol-O-methyltransferase inhibition. Biol Psychiatry 71, 538-544 (2012).
  16. S. C. Magalona et al., Effect of tolcapone on brain activity during a variable attentional control task: a double-blind,placebo-controlled, counter-balanced trial in healthy volunteers. CNS Drugs 27, 663-673 (2013)
  17. P. Bitsios, P. Roussos, Tolcapone, COMT polymorphisms and pharmacogenomic treatment of schizophrenia. Pharmacogenomics 12, 559-566 (2011).
  18. E. Huang et al., Catechol-O-Methyltransferase Val158Met Polymorphism and Clinical Response to Antipsychotic Treatment in Schizophrenia and Schizo-Affective Disorder Patients: a Meta-Analysis. Int. J. Neuropsychopharmacol. 19, (2016).
  19. J. P. Schacht, COMT val158met moderation of dopaminergic drug effects on cognitive function: a critical review. Pharmacogenomics J. 16, 430-438 (2016).
  20. H. Chen, et al., COMT genetic variation and clinical response to antipsychotic drug treatment: A Meta-analysis. Zhong Nan Da Xue Bao Yi Xue Ban 40, 623-631 (2015).
  21. .Rebollo-Mesa et al., COMT (Val (158/108) Met) genotype moderates the impact of antipsychotic medication on verbal IQ in twins with schizophrenia. Psychiatr. Genet. 21, 98-105 (2011).
  22. B. Arts, et al., Antipsychotic medications and cognitive functioning in bipolar disorder: moderating effects of COMT Val108/158 Met genotype. BMC Psychiatry 13, 63 (2013).
  23. N. D. Woodward, K. Jayathilake, H. Y. Meltzer, COMT val108/158met genotype, cognitive function, and cognitive improvement with clozapine in schizophrenia. Schizophr. Res. 90, 86-96 (2007).
  24. T. W. Weickert et al., Catechol-O-methyltransferase val108/158met genotype predicts working memory response to antipsychotic medications. Biol. Psychiatry 56, 677-682 (2004).
  25. L. Cinnamon Bidwell, et al., Alpha-2 adrenergic receptors and attention-deficit/hyperactivity disorder. Curr. Psychiatry Rep. 12, 366-373 (2010).
  26. B. N. Kim et al., Regional differences in cerebral perfusion associated with the alpha-2A-adrenergic receptor genotypes in attention deficit hyperactivity disorder. J. Psychiatry Neurosci. 35, 330-336 (2010).
  27. A. F. Arnsten, The use of α-2A adrenergic agonists for the treatment of attention-deficit/hyperactivity disorder. Expert Rev. Neurother. 10, 1595-1605 (2010).
  28. N. T. Bello, Clinical utility of guanfacine extended release in the treatment of ADHD in children and adolescents. Patient Prefer Adherence 9, 877-885 (2015).
  29. A. F. Arnsten, et al., Methylphenidate improves prefrontal cortical cognitive function through alpha2 adrenoceptor and dopamine D1 receptor actions: Relevance to therapeutic effects in Attention Deficit Hyperactivity Disorder. Behav. Brain Funct. 1, 2 (2005).
  30. B. N. Kim et al., Norepinephrine genes predict response time variability and methylphenidate-induced changes in neuropsychological function in attention deficit hyperactivity disorder. J. Clin. Psychopharmacol. 33, 356-362 (2013).
  31. T. L. da Silva et al., Adrenergic alpha2A receptor gene and response to methylphenidate in attention-deficit/hyperactivity disorder-predominantly inattentive type. J Neural Transm (Vienna) 115, 341-345 (2008).
  32. G. Polanczyk et al., Association of the adrenergic alpha2A receptor gene with methylphenidate improvement of inattentive symptoms in children and adolescents with attention-deficit/hyperactivity disorder. Arch. Gen. Psychiatry 64, 218-224 (2007).
  33. S. M. Stahl., L-methylfolate: a vitamin for your monoamines. J. Clin. Psychiatry 69, 1352-1353 (2008).
  34. D. M. Robinson., Vitamins, Monoamines, and Depression. Primary Psychiatry, 16, 19-21(2009).
  35. Y. L. Wu et al., Association between MTHFR C677T polymorphism and depression: An updated meta-analysis of 26 studies. Prog. Neuropsychopharmacol. Biol. Psychiatry 46, 78-85 (2013).
  36. S. Gilbody, et al., Methylenetetrahydrofolate reductase (MTHFR) genetic polymorphisms and psychiatric disorders: a HuGE review. Am. J. Epidemiol. 165, 1-13 (2007).
  37. O. L. Peerbooms et al., Meta-analysis of MTHFR gene variants in schizophrenia, bipolar disorder and unipolar depressive disorder: evidence for a common genetic vulnerability? Brain Behav. Immun. 25, 1530-1543 (2011).
  38. G. I. Papakostas et al., L-methylfolate as adjunctive therapy for SSRI-resistant major depression: results of two randomized, double-blind, parallel-sequential trials. Am. J. Psychiatry 169, 1267-1274 (2012).
  39. L. D. Ginsberg, et al., L-methylfolate Plus SSRI or SNRI from Treatment Initiation Compared to SSRI or SNRI Monotherapy in a Major Depressive Episode. Innov Clin Neurosci 8, 19-28 (2011).
  40. R. L. Wade, et al., Comparative assessment of adherence measures and resource use in SSRI/SNRI-treated patients with depression using second-generation antipsychotics or L-methylfolate as adjunctive therapy. Journal of managed care pharmacy: JMCP 20, 76-85 (2014).
  41. G. I. Papakostas et al., Effect of adjunctive L-methylfolate 15 mg among inadequate responders to SSRIs in depressed patients who were stratified by biomarker levels and genotype: results from a randomized clinical trial. J. Clin. Psychiatry 75, 855-863 (2014).
  42. S. C. Liew, et al., Methylenetetrahydrofolate reductase (MTHFR) C677T polymorphism: epidemiology, metabolism and the associated diseases. Eur. J. Med. Genet. 58, 1-10 (2015).
  43. A. W. Mech, et al., Correlation of clinical response with homocysteine reduction during therapy with reduced B vitamins in patients with MDD who are positive for MTHFR C677T or A1298C polymorphism: a randomized, double-blind, placebo-controlled study. J. Clin. Psychiatry 77, 668-671 (2016).
  44. U. Yadav, et al., Role of MTHFR C677T gene polymorphism in the susceptibility of schizophrenia: An updated meta-analysis. Asian J Psychiatr 20, 41-51 (2016).
  45. F. F. Roussotte, et al., The C677T variant in MTHFR modulates associations between blood-based and cerebrospinal fluid biomarkers of neurodegeneration. Neuroreport 27, 948-951 (2016).
  46. M. Notaras, et al., The BDNF gene Val66Met polymorphism as a modifier of psychiatric disorder susceptibility: progress and controversy. Mol. Psychiatry 20, 916-930 (2015).
  47. G. A. Martinez-Levy, et al., Genetic and epigenetic regulation of the brain-derived neurotrophic factor in the central nervous system. Yale J. Biol. Med. 87, 173-186 (2014).
  48. M. Verhagen et al., Meta-analysis of the BDNF Val66Met polymorphism in major depressive disorder: effects of gender and ethnicity. Mol. Psychiatry 15, 260-271 (2010).
  49. G. M. Hosang, et al., Interaction between stress and the BDNF Val66Met polymorphism in depression: a systematic review and meta-analysis. BMC Med. 12, 7 (2014).
  50. Y. Pei et al., The brain-derived neurotrophic-factor (BDNF) val66met polymorphism is associated with geriatric depression: a meta-analysis. Am. J. Med. Genet. B Neuropsychiatr. Genet. 159B, 560-566 (2012).
  51. J. Y. Lau et al., BDNF gene polymorphism (Val66Met) predicts amygdala and anterior hippocampus responses to emotional faces in anxious and depressed adolescents. Neuroimage 53, 952-961 (2010).
  52. Z. Y. Chen, et al., Impact of genetic variant BDNF (Val66Met) on brain structure and function. Novartis Found. Symp. 289, 180-188; discussion 188-195 (2008).
  53. J. LeMoult, et al., Predicting change in symptoms of depression during the transition to university: the roles of BDNF and working memory capacity. Cogn. Affect. Behav. Neurosci. 15, 95-103 (2015).
  54. Q. Q. Sun et al., Functional and structural specific roles of activity-driven BDNF within circuits formed by single spiny stellate neurons of the barrel cortex. Front Cell Neurosci 8, 372 (2014).
  55. M. Pecina et al., Valence-specific effects of BDNF Val66Met polymorphism on dopaminergic stress and reward processing in humans. J. Neurosci. 34, 5874-5881 (2014).
  56. H. Yu et al., Variant brain-derived neurotrophic factor Val66Met polymorphism alters vulnerability to stress and response to antidepressants. J. Neurosci. 32, 4092-4101 (2012).
  57. S. J. Tsai, et al., Effects of BDNF polymorphisms on antidepressant action. Psychiatry Investig 7, 236-242 (2010).
  58. Y. F. Zou et al., Meta-analysis of BDNF Val66Met polymorphism association with treatment response in patientswith major depressive disorder. Eur. Neuropsychopharmacol. 20, 535-544 (2010).
  59. R. Colle et al., Brain-derived neurotrophic factor Val66Met polymorphism and 6-month antidepressant remission in depressed Caucasian patients. J. Affect. Disord. 175, 233-240 (2015).
  60. G. M. Murphy, Jr. et al., BDNF and CREB1 genetic variants interact to affect antidepressant treatment outcomes in geriatric depression. Pharmacogenet. Genomics 23, 301-313 (2013).
  61. K. G. Bath et al., BDNF Val66Met impairs fluoxetine-induced enhancement of adult hippocampus plasticity. Neuropsychopharmacology 37, 1297-1304 (2012).
  62. B. N. Greenwood, et al., A behavioral analysis of the impact of voluntary physical activity on hippocampus-dependent contextual conditioning. Hippocampus 19, 988-1001 (2009)
  63. K. I. Erickson et al., The brain-derived neurotrophic factor Val66Met polymorphism moderates an effect of physical activity on working memory performance. Psychol. Sci. 24, 1770-1779 (2013).
  64. C. M. Nascimento et al., Physical exercise improves peripheral BDNF levels and cognitive functions in mild cognitive impairment elderly with different bdnf Val66Met genotypes. J. Alzheimers Dis. 43, 81-91 (2015).
  65. L. B. Stone, et al., Identifying genetic predictors of depression risk: 5-HTTLPR and BDNF Val66Met polymorphisms are associated with rumination and co-rumination in adolescents. Front Genet 4, 246 (2013).
  66. T. Niitsu, et al., Pharmacogenetics in major depression: a comprehensive meta-analysis. Prog. Neuropsychopharmacol. Biol. Psychiatry 45, 183-194 (2013).
  67. F. C. Cagni et al., Association of BDNF Val66MET Polymorphism With Parkinson's Disease and Depression and Anxiety Symptoms. J. Neuropsychiatry Clin. Neurosci. appineuropsych16040062 (2016).
  68. A. Bombardier, et al., Altered Episodic Memory in Introverted Young Adults Carrying the BDNFMet Allele. Int. J. Mol. Sci. 17, (2016).
  69. R. C. Crist, et al., Pharmacogenetics of OPRM1. Pharmacol. Biochem. Behav. 123, 25-33 (2014).
  70. Z. Y. Ren et al., The impact of genetic variation on sensitivity to opioid analgesics in patients with postoperative pain: a systematic review and meta-analysis. Pain physician 18, 131-152 (2015).
  71. .A. Hajj et al., Genotyping test with clinical factors: better management of acute postoperative pain? Int. J. Mol. Sci. 16, 6298-6311 (2015).
  72. Z. Zahari et al., The AC/AG Diplotype for the 118A>G and IVS2 + 691G>C Polymorphisms of OPRM1 Gene is Associated with Sleep Quality Among Opioid-Dependent Patients on Methadone Maintenance Therapy. Pain Ther 5, 43-54 (2016).
  73. M. G. Lee, et al., The Influence of Genotype Polymorphism on Morphine Analgesic Effect for Postoperative Pain in Children. Korean J Pain 29, 34-39 (2016).
  74. M. Baber, et al., The pharmacogenetics of opioid therapy in the management of postpartum pain: a systematic review. Pharmacogenomics 17, 75-93 (2016).
  75. A. C. Chen et al., Variation in Mu-Opioid Receptor Gene (OPRM1) as a Moderator of Naltrexone Treatment to Reduce Heavy Drinking in a High Functioning Cohort. J Alcohol Drug Depend 1, 101 (2013).
  76. A. J. Chamorro et al., Association of micro-opioid receptor (OPRM1) gene polymorphism with response to naltrexone in alcohol dependence: a systematic review and meta-analysis. Addict. Biol. 17, 505-512 (2012).
  77. L. A. Ray, et al. A polymorphism of the mu-opioid receptor gene (OPRM1) and sensitivity to the effects of alcohol in humans. Alcohol. Clin. Exp. Res. 28, 1789-1795 (2004).
  78. R. F. Anton et al., An evaluation of mu-opioid receptor (OPRM1) as a predictor of naltrexone response in the treatment of alcohol dependence: results from the Combined Pharmacotherapies and Behavioral Interventions for Alcohol Dependence (COMBINE) study. Arch. Gen. Psychiatry 65, 135-144 (2008).
  79. H. R. Kranzler, et al., Variation in OPRM1 moderates the effect of desire to drink on subsequent drinking and its attenuation by naltrexone treatment. Addict. Biol. 18, 193-201 (2013).
  80. H. R. Kranzler et al., Topiramate treatment for heavy drinkers: moderation by a GRIK1 polymorphism. Am. J. Psychiatry 171, 445-452 (2014).
  81. H. R. Kranzler et al., Posttreatment effects of topiramate treatment for heavy drinking. Alcohol. Clin. Exp. Res. 38, 3017-3023 (2014).
  82. H. R. Kranzler et al., GRIK1 genotype moderates topiramate's effects on daily drinking level, expectations of alcohol's positive effects and desire to drink. Int. J. Neuropsychopharmacol. 17, 1549-1556 (2014).
  83. H. R. Kranzler et al., Self-efficacy mediates the effects of topiramate and GRIK1 genotype on drinking. Addict. Biol. 21, 450-459 (2016).
  84. R. Feinn, et al., Balancing risk and benefit in heavy drinkers treated with topiramate: implications for personalized care. J. Clin. Psychiatry, 77, e278-282 (2016).
  85. The Human Cytochrome P450 (CYP) Allele Nomenclature Database. http://www.cypalleles.ki.se/.
  86. Thorn C.F., et al., PharmGKB summary: very important pharmacogene information for CYP1A2. Pharmacogenetics and Genomics, 22, 73-77 (2012).
  87. E. Spina, et al., Clinical applications of CYP genotyping in psychiatry. J Neural Transm (Vienna) 122, 5-28 (2015). 181.S. C. Sim, et al., Pharmacogenomics of drug-metabolizing enzymes: a recent update on clinical implications and endogenous effects. Pharmacogenomics J. 13, 1-11 (2013).
  88. X. Yang et al., Systematic genetic and genomic analysis of cytochrome P450 enzyme activities in human liver. Genome Res. 20, 1020-1036 (2010).
  89. X. Yang et al., Systematic genetic and genomic analysis of cytochrome P450 enzyme activities in human liver. Genome Res. 20, 1020-1036 (2010).
  90. 183.D. Ravyn, et al., CYP450 pharmacogenetic treatment strategies for antipsychotics: a review of the evidence. Schizophr. Res. 149, 1-14 (2013).
  91. S. F. Zhou, et al., Insights into the substrate specificity, inhibitors, regulation, and polymorphisms and the clinical impact of human cytochrome P450 1A2. AAPS J. 11, 481-494 (2009).
  92. S. L. Browning, et al., CYP1A2 is more variable than previously thought: a genomic biography of the gene behind the human drug-metabolizing enzyme. Pharmacogenet. Genomics 20, 647-664 (2010).
  93. J. de Leon, et al., The dosing of atypical antipsychotics. Psychosomatics 46, 262-273 (2005).
  94. A. Gunes, et al., Variation in CYP1A2 activity and its clinical implications: influence of environmental factors and genetic polymorphisms. Pharmacogenomics 9(5), 625-637 (2008).
  95. L. N. Ma, et al., A theoretical study on the mechanism of a superficial mutation inhibiting the enzymatic activity of CYP1A2. Interdiscip. Sci. 6, 25-31 (2014).
  96. N. Murayama et al., Six novel nonsynonymous CYP1A2 gene polymorphisms: catalytic activities of the naturally occurring variant enzymes. J. Pharmacol. Exp. Ther. 308, 300-306 (2004).
  97. M. Ferrari et al., Association between CYP1A2 polymorphisms and clozapine-induced adverse reactions in patients with schizophrenia. Psychiatry Res. 200, 1014-1017 (2012).
  98. K. I. Melkersson, et al., Impact of CYP1A2 and CYP2D6 polymorphisms on drug metabolism and on insulin and lipid elevations and insulin resistance in clozapine-treated patients. J. Clin. Psychiatry 68, 697-704 (2007).
  99. S. Pavanello, et al., Influence of the genetic polymorphism in the 5'-noncoding region of the CYP1A2 gene on CYP1A2 phenotype and urinary mutagenicity in smokers. Mutat. Res. 587, 59-66 (2005).
  100. H. W. Kuo et al., CYP1A2 genetic polymorphisms are associated with early antidepressant escitalopram metabolism and adverse reactions. Pharmacogenomics 14, 1191-1201 (2013).
  101. B. Laika, et al., Pharmacogenetics and olanzapine treatment: CYP1A2*1F and serotonergic polymorphisms influence therapeutic outcome. Pharmacogenomics J. 10, 20-29 (2010).
  102. A. Yang, et al., Genetics of caffeine consumption and responses to caffeine. Psychopharmacology (Berl.) 211, 245-257 (2010).
  103. X. M. Han et al., Inducibility of CYP1A2 by omeprazole in vivo related to the genetic polymorphism of CYP1A2. Br. J. Clin. Pharmacol. 54, 540-543 (2002).
  104. S. Peterson et al., CYP1A2, GSTM1, and GSTT1 polymorphisms and diet effects on CYP1A2 activity in a crossover feeding trial. Cancer Epidemiol. Biomarkers Prev. 18, 3118-3125 (2009).
  105. M. P. Knadler, et al., Duloxetine: clinical pharmacokinetics and drug interactions. Clin. Pharmacokinet. 50, 281-294 (2011).
  106. R. Cacabelos, et al., Genomics and pharmacogenomics of schizophrenia. CNS Neurosci Ther 17, 541-565 (2011).
  107. Q. Xu et al., Pharmacogenomics can improve antipsychotic treatment in schizophrenia. Front Med 7, 180-190 (2013).
  108. F. B. Kohlrausch et al., The CYP1A2 -163C>A polymorphism is associated with clozapine-induced generalized tonic-clonic seizures in Brazilian schizophrenia patients. Psychiatry Res. 209, 242-245 (2013).
  109. W. K. Kennedy, et al., Clinically significant drug interactions with atypical antipsychotics. CNS Drugs 27, 1021-1048 (2013).
  110. O. Alagoz, et al., Cost-effectiveness of one-time genetic testing to minimize lifetime adverse drug reactions. Pharmacogenomics J. 16, 129-136 (2016).
  111. S. M. Stout, et al., Exogenous cannabinoids as substrates, inhibitors, and inducers of human drug metabolizing enzymes: a systematic review. Drug Metab. Rev. 46, 86-95 (2014).
  112. D. G. Walters et al., Cruciferous vegetable consumption alters the metabolism of the dietary carcinogen 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) in humans. Carcinogenesis 25, 1659-1669 (2004).
  113. T. Geng et al., Genetic polymorphism analysis of the drug-metabolizing enzyme CYP1A2 in a Uyghur Chinese population: a pilot study. Xenobiotica 46, 542-547 (2016).
  114. C. F. Samer, et al., Applications of CYP450 testing in the clinical setting. Mol. Diagn. Ther. 17, 165-184 (2013).
  115. U. M. Zanger, et al., Pharmacogenetics of cytochrome P450 2B6 (CYP2B6): advances on polymorphisms,mechanisms, and clinical relevance. Front Genet 4, 24 (2013).
  116. H. Wang, et al., CYP2B6: new insights into a historically overlooked cytochrome P450 isozyme. Curr. Drug Metab. 9, 598-610 (2008).
  117. E. Varshney, et al., Prevalence of poor and rapid metabolizers of drugs metabolized by CYP2B6 in North Indian population residing in Indian national capital territory. SpringerPlus 1, 34 (2012).
  118. H. Zhang et al., Polymorphic variants of cytochrome P450 2B6 (CYP2B6.4-CYP2B6.9) exhibit altered rates of metabolism for bupropion and efavirenz: a charge-reversal mutation in the K139E variant (CYP2B6.8) impairs formation of a functional cytochrome p450-reductase complex. J. Pharmacol. Exp. Ther. 338, 803-809 (2011).
  119. T. Lang et al., Extensive genetic polymorphism in the human CYP2B6 gene with impact on expression and function in human liver. Pharmacogenetics 11, 399-415 (2001).
  120. M. H. Hofmann et al., Aberrant splicing caused by single nucleotide polymorphism c.516G>T [Q172H], a marker of CYP2B6*6, is responsible for decreased expression and activity of CYP2B6 in liver. J. Pharmacol. Exp. Ther. 325, 284-292 (2008).
  121. Z. Desta et al., Impact of CYP2B6 polymorphism on hepatic efavirenz metabolism in vitro. Pharmacogenomics 8,547-558 (2007).
  122. O. Levran et al., CYP2B6 SNPs are associated with methadone dose required for effective treatment of opioid addiction. Addict. Biol. 18, 709-716 (2013).
  123. S. C. Wang, et al., Pharmacogenomics study in a Taiwan methadone maintenance cohort. J. Food Drug Anal. 21, S62-s68 (2013).
  124. A. Z. Zhu et al., CYP2B6 and bupropion's smoking-cessation pharmacology: the role of hydroxybupropion. Clin. Pharmacol. Ther. 92, 771-777 (2012).
  125. A. K. Laib, et al., Serum concentrations of hydroxybupropion for dose optimization of depressed patients treated with bupropion. Ther. Drug Monit. 36, 473-479 (2014).
  126. D. Yeniceli, et al., A simple and sensitive LC-ESI-MS (ion trap) method for the determination of bupropion and its major metabolite, hydroxybupropion in rat plasma and brain microdialysates. Talanta 84, 19-26 (2011).
  127. G. Hoiseth, et al., Effect of CYP2B6*6 on Steady-State Serum Concentrations of Bupropion and Hydroxybupropion in Psychiatric Patients: A Study Based on Therapeutic Drug Monitoring Data. Ther. Drug Monit. 37, 589-593 (2015).
  128. D. Van Booven et al., Cytochrome P450 2C9-CYP2C9. Pharmacogenet. Genomics 20, 277-281 (2010).
  129. J. J. Swen et al., Pharmacogenetics: from bench to byte–an update of guidelines. Clin. Pharmacol. Ther. 89, 662-673 (2011).
  130. V. M. Pratt et al., Characterization of 107 genomic DNA reference materials for CYP2D6, CYP2C19, CYP2C9, VKORC1, and UGT1A1: a GeT-RM and Association for Molecular Pathology collaborative project. J. Mol. Diagn. 12, 835-846 (2010).
  131. A. H. Wu, Drug metabolizing enzyme activities versus genetic variances for drug of clinical pharmacogenomic relevance. Clin Proteomics 8, 12 (2011).
  132. S. F. Zhou, et al., Polymorphisms of human cytochrome P450 2C9 and the functional relevance. Toxicology 278, 165-188 (2010).
  133. N. Carbonell et al., CYP2C9*3 Loss-of-Function Allele Is Associated With Acute Upper Gastrointestinal Bleeding Related to the Use of NSAIDs Other Than Aspirin. Clin. Pharmacol. Ther. 87, 693-698 (2010).
  134. J. A. Johnson et al., Clinical Pharmacogenetics Implementation Consortium Guidelines for CYP2C9 and VKORC1 genotypes and warfarin dosing. Clin. Pharmacol. Ther. 90, 625-629 (2011).
  135. J. A. Agundez, et al., Genetically based impairment in CYP2C8- and CYP2C9-dependent NSAID metabolism as a risk factor for gastrointestinal bleeding: is a combination of pharmacogenomics and metabolomics required to improve personalized medicine? Expert Opin. Drug Metab. Toxicol. 5, 607-620 (2009).
  136. Y. Liu et al., Decreased warfarin clearance associated with the CYP2C9 R150H (*8) polymorphism. Clin. Pharmacol. Ther. 91, 660-665 (2012).
  137. Y. Guo et al., Role of CYP2C9 and its variants (CYP2C9*3 and CYP2C9*13) in the metabolism of lornoxicam in humans. Drug Metab. Dispos. 33, 749-753 (2005).
  138. K. Drozda, et al., Pharmacogenomic testing for neuropsychiatric drugs: current status of drug labeling, guidelines for using genetic information, and test options. Pharmacotherapy 34, 166-184 (2014).
  139. L. H. Cavallari, et al., Role of cytochrome P450 genotype in the steps toward personalized drug therapy. Pharmgenomics Pers Med 4, 123-136 (2011).
  140. J. K. Hicks et al., Clinical Pharmacogenetics Implementation Consortium guideline for CYP2D6 and CYP2C19 genotypes and dosing of tricyclic antidepressants. Clin. Pharmacol. Ther. 93, 402-408 (2013).
  141. J. K. Hicks et al., Clinical Pharmacogenetics Implementation Consortium (CPIC) Guideline for CYP2D6 and CYP2C19 Genotypes and Dosing of Selective Serotonin Reuptake Inhibitors. Clin. Pharmacol. Ther. 98, 127-134 (2015).
  142. J. van der Weide, et al., Metabolic ratios of psychotropics as indication of cytochrome P450 2D6/2C19 genotype. Ther. Drug Monit. 27, 478-483 (2005).
  143. D. A. Mrazek et al., CYP2C19 variation and citalopram response. Pharmacogenet. Genomics 21, 1-9 (2011).
  144. I. Rudberg, et al., Impact of the ultrarapid CYP2C19*17 allele on serum concentration of escitalopram in psychiatric patients. Clin. Pharmacol. Ther. 83, 322-327 (2008).
  145. P. W. Schenk et al., The CYP2C19*17 genotype is associated with lower imipramine plasma concentrations in a large group of depressed patients. Pharmacogenomics J. 10, 219-225 (2010).
  146. M. Chang, et al., CYP2C19*17 affects R-warfarin plasma clearance and warfarin INR/dose ratio in patients on stable warfarin maintenance therapy. Eur. J. Clin. Pharmacol. 71, 433-439 (2015).
  147. D. Sibbing et al., Cytochrome 2C19*17 allelic variant, platelet aggregation, bleeding events, and stent thrombosis in clopidogrel-treated patients with coronary stent placement. Circulation 121, 512-518 (2010).
  148. L. Karlsson et al., Influence of CYP2D6 and CYP2C19 genotypes on venlafaxine metabolic ratios and stereoselective metabolism in forensic autopsy cases. Pharmacogenomics J. 15, 165-171 (2015).
  149. M. Takahashi et al., Functional characterization of 21 CYP2C19 allelic variants for clopidogrel 2-oxidation. Pharmacogenomics J. 15, 26-32 (2015).
  150. H. Wang et al., Evaluation of the effects of 20 nonsynonymous single nucleotide polymorphisms of CYP2C19 on S-mephenytoin 4'-hydroxylation and omeprazole 5'-hydroxylation. Drug Metab. Dispos. 39, 830-837 (2011).
  151. M. Nassan et al., Pharmacokinetic Pharmacogenetic Prescribing Guidelines for Antidepressants: A Template for Psychiatric Precision Medicine. Mayo Clin. Proc. 91, 897-907 (2016).
  152. S. F. Zhou, Polymorphism of human cytochrome P450 2D6 and its clinical significance: Part I. Clin. Pharmacokinet. 48, 689-723 (2009).
  153. S. F. Zhou, Polymorphism of human cytochrome P450 2D6 and its clinical significance: part II. Clin. Pharmacokinet. 48, 761-804 (2009).
  154. S. Haertter, Recent examples on the clinical relevance of the CYP2D6 polymorphism and endogenous functionality of CYP2D6. Drug Metabol. Drug Interact. 28, 209-216 (2013).
  155. A. I. Nichols, et al., Pharmacokinetics of venlafaxine extended release 75 mg and desvenlafaxine 50 mg in healthy CYP2D6 extensive and poor metabolizers: a randomized, open-label, two-period, parallel-group, crossover study. Clin. Drug Investig. 31, 155-167 (2011).
  156. J. de Leon et al., The CYP2D6 poor metabolizer phenotype may be associated with risperidone adverse drug reactions and discontinuation. J. Clin. Psychiatry 66, 15-27 (2005).
  157. K. R. Crews et al., Clinical Pharmacogenetics Implementation Consortium (CPIC) guidelines for codeine therapy in the context of cytochrome P450 2D6 (CYP2D6) genotype. Clin. Pharmacol. Ther. 91, 321-326 (2012).
  158. J. Sistonen et al., CYP2D6 worldwide genetic variation shows high frequency of altered activity variants and no continental structure. Pharmacogenet. Genomics 17, 93-101 (2007).
  159. H. L. Rogers et al., CYP2D6 genotype information to guide pimozide treatment in adult and pediatric patients: basis for the U.S. Food and Drug Administration's new dosing recommendations. J. Clin. Psychiatry 73, 1187-1190 (2012).
  160. K. W. Lobello et al., Cytochrome P450 2D6 phenotype predicts antidepressant efficacy of venlafaxine: a secondary analysis of 4 studies in major depressive disorder. J. Clin. Psychiatry 71, 1482-1487 (2010).
  161. J. M. Sauer, et al., Clinical pharmacokinetics of atomoxetine. Clin. Pharmacokinet. 44, 571-590 (2005).
  162. J. Y. Byeon et al., Effects of the CYP2D6*10 allele on the pharmacokinetics of atomoxetine and its metabolites. Arch. Pharm. Res. 38, 2083-2091 (2015).
  163. B. A. Fijal et al., CYP2D6 predicted metabolizer status and safety in adult patients with attention-deficit hyperactivity disorder participating in a large placebo-controlled atomoxetine maintenance of response clinical trial. J. Clin. Pharmacol. 55, 1167-1174 (2015).
  164. R. Chen, et al., Cytochrome P450 2D6 genotype affects the pharmacokinetics of controlled-release paroxetine in healthy Chinese subjects: comparison of traditional phenotype and activity score systems. Eur. J. Clin. Pharmacol. 71, 835-841 (2015).
  165. F. Vandenberghe et al., Genetics-Based Population Pharmacokinetics and Pharmacodynamics of Risperidone in a Psychiatric Cohort. Clin. Pharmacokinet. 54, 1259-1272 (2015).
  166. B. Mannheimer, et al., Impact of multiple inhibitors or substrates of cytochrome P450 2D6 on plasma risperidone levels in patients on polypharmacy. Ther. Drug Monit. 30, 565-569 (2008).
  167. V. Haufroid, et al., CYP2D6 genetic polymorphisms and their relevance for poisoning due to amfetamines, opioid analgesics and antidepressants. Clinical toxicology (Philadelphia, Pa.) 53, 501-510 (2015).
  168. H. S. Smith, Opioid metabolism. Mayo Clin. Proc. 84, 613-624 (2009).
  169. O. A. Linares, et al., CYP2D6 phenotype-specific codeine population pharmacokinetics. J. Pain Palliat. Care Pharmacother. 29, 4-15 (2015).
  170. O. A. Linares, et al., Individualized Hydrocodone Therapy Based on Phenotype, Pharmacogenetics, and Pharmacokinetic Dosing. Clin. J. Pain 31, 1026-1035 (2015).
  171. C. Willyard, Copy number variations' effect on drug response still overlooked. Nat. Med. 21, 206 (2015). 265.P. Lisbeth et al., Genotype and co-medication dependent CYP2D6 metabolic activity: effects on serum
  172. concentrations of aripiprazole, haloperidol, risperidone, paliperidone and zuclopenthixol. Eur. J. Clin. Pharmacol. 72, 175-184 (2016).
  173. R. S. Gammal et al., Pharmacogenetics for Safe Codeine Use in Sickle Cell Disease. Pediatrics 138, (2016).
  174. J. N. Roy et al., CYP3A5 genetic polymorphisms in different ethnic populations. Drug Metab. Dispos. 33, 884-887(2005).
  175. Y. Y. Chiu, et al., Lurasidone drug-drug interaction studies: a comprehensive review. Drug Metabol. Drug Interact. 29, 191-202 (2014).
  176. L. K. Tanno et al., The Absence of CYP3A5*3 Is a Protective Factor to Anticonvulsants Hypersensitivity Reactions: A Case-Control Study in Brazilian Subjects. PLoS ONE 10, e0136141 (2015).